Acta Crystallographica Section E

Structure Reports

Online

Dibromobis(3-methoxy-2-methylpyrazine 1-oxide-кO)copper(II)

ISSN 1600-5368

You-Min Sun, ${ }^{\text {a }}$ Jing-Min Shi ${ }^{\text {b }}$ and Zhe Liu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Environment, Shandong Institute of Architecture \& Engineering, Jinan 250101, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail:
shijingmin@beelink.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
Disorder in main residue
R factor $=0.059$
$w R$ factor $=0.160$
Data-to-parameter ratio $=14.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title mononuclear $\mathrm{Cu}^{\text {II }}$ complex, $\left[\mathrm{CuBr}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$, the $\mathrm{Cu}^{\mathrm{II}}$ atom assumes a tetrahedrally distorted square-planar coordination geometry. Two Br^{-}anions and two methylmethoxypyrazine oxide ligands (mmpo) coordinate in a cis manner to the $\mathrm{Cu}^{\mathrm{II}}$ atom, with a dihedral angle of $34.60(16)^{\circ}$ the between the $\mathrm{Cu} / \mathrm{Br} / \mathrm{Br}$ and $\mathrm{Cu} / \mathrm{O} / \mathrm{O}$ planes.

Comment

Pyrazine N-oxide and its derivatives usually play the role of bridge ligands in polynuclear metal complexes (Sun et al., 2001). We prepared the title $\mathrm{Cu}^{\mathrm{II}}$ complex, (I), incorporating a methylmethoxypyrazine oxide ligand. Its X-ray crystal structure shows a monodentate coordination mode for the pyrazine N oxide ligand.

(I)

The molecular structure of (I) is shown in Fig. 1. The $\mathrm{Cu}^{\mathrm{II}}$ atom assumes a tetrahedrally distorted square-planar coordination geometry. Two methylmethoxypyrazine oxide (mmpo) ligands coordinate cis to the $\mathrm{Cu}^{\text {II }}$ atom via the terminal O atom, but not via the pyrazine N atoms. Thus, mmpo displays a monodentate coordination mode in (I). Two Br^{-}anions are bonded to the $\mathrm{Cu}^{\text {II }}$ atom to complete the four-coordinate geometry. The $\mathrm{Cu} / \mathrm{O} 1 / \mathrm{O} 3$ plane is tilted with respect to the $\mathrm{Cu} /$ $\mathrm{Br} 1 / \mathrm{Br} 2$ plane by a dihedral angle of $34.60(16)^{\circ}$. The bond angles at the Cu atom (Table 1) also show the extent of the distortion of the coordination geometry from square planar.

Of the two coordinated mmpo ligands, one is ordered but the other one is disordered over two different orientations, as shown in Fig. 1.

Experimental

3-Methoxy-2-methylpyrazine 1-oxide ($0.23 \mathrm{~g}, 1.7 \mathrm{mmol}$) was added to an aqueous solution $(15 \mathrm{ml})$ containing $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.31 \mathrm{~g}$,

Received 16 May 2005 Accepted 11 July 2005 Online 16 July 2005
$0.85 \mathrm{mmol})$ and $\mathrm{NaBr}(0.18 \mathrm{~g}, 1.7 \mathrm{mmol})$. The solution was stirred for 10 min at room temperature. Red single crystals of (I) were obtained after three weeks.

Crystal data

$\left[\mathrm{CuBr}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=503.65$
Triclinic, $P \overline{1}$
$a=8.270(2) \AA$
$b=10.619(3) \AA$
$c=11.399(3) \AA$
$\alpha=64.657(3)^{\circ}$
$\beta=75.794(4)^{\circ}$
$\gamma=72.154(4)^{\circ}$
$V=853.6(4) \AA^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.437, T_{\text {max }}=0.556$
4443 measured reflections

Refinement

```
Refinement on }\mp@subsup{F}{}{2
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.059
wR(F}\mp@subsup{F}{}{2})=0.16
S=1.07
2956 reflections
202 parameters
H-atom parameters constrained
```

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.960 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 1930 reflections
$\theta=2.3-26.7^{\circ}$
$\mu=5.98 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, red
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$

2956 independent reflections
2343 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-5 \rightarrow 9$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0867 P)^{2}\right. \\
& +2.2242 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\max }=1.48 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.76 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The dashed lines indicate the minor component of the disordered mmpo ligand.
refinement. Both components of the disordered mmpo ligand were refined isotropically. Methyl H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ and refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and refined using a riding model, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The highest peak in the difference map is $0.90 \AA$ from atom Br 2 .

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

The work was supported by the Natural Science Foundation of China (No. 20271043) and the Natural Science Foundation of Shandong Province of China (No. Y2002B10).

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5. A06). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Sun, H.-L., Ma, B,-Q., Gao, S. \& Su, G. (2001). Chem. Commun. pp. 2586-2587.

